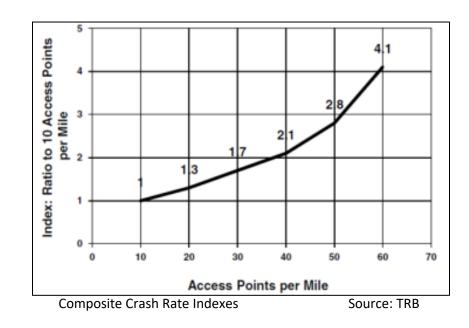


Highway System Access Manual

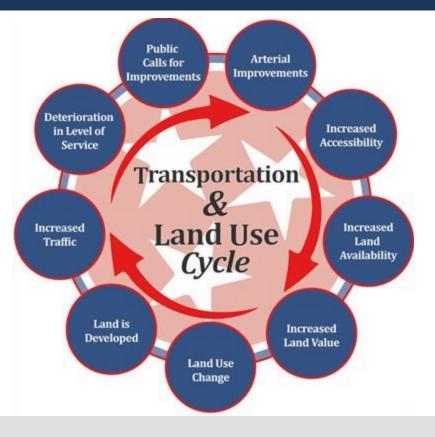
HSAM

Michelle Nickerson, PE, PTOE | April 2024



Volume 3

Benefits of Access Management


- 50% Crash Reduction
- 45% Increased roadway capacity
- 60% reduced travel time and delay

Benefits of Access Management

"An effective access management program can slow or reduce the cycle shown . . . Without adversely affecting economic development." (TRB)

Benefits of Access Management

Table INTRO-1: Effects of Access Management Techniques

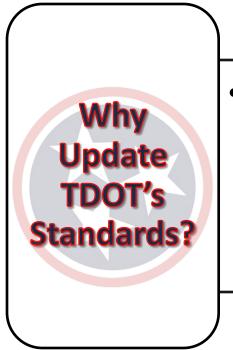
Summary of Research on Effects of Access Management Techniques

Treatment	Effect		
Add continuous Two-Way Left-Turn	35% reduction in total crashes		
Lane (TWLTL)	30% decrease in delay		
	30% increase in capacity		
Add non-traversable median	> 55% reduction in total crashes		
	30% decrease in delay		
	30% increase in capacity		
Replace TWLTL with	15% to 57% reduction in crashes on four-lane roads		
non-traversable median	25% to 50% reduction in crashes on six-lane roads	Type of left-turn improvement	
Add loft turn hour	25% to 50% reduction in crashes on four-lane roads	- Painted	32% reduction in total crashes
Add left-turn bay		 Separator or raised divider 	67% reduction in total crashes
	Up to 75% reduction in total crashes at unsignalized	Add right-turn bay	20% reduction in total crashes
	access		Limit right-turn interference with platooned flow,
	25% increase in capacity		increased capacity
		Visual cue at driveways, driveway	42% reduction in crashes
		illumination	

Long signal spacing with limited

Source: TRB Access Management Manual 2nd Edition, 2014, pg. 30

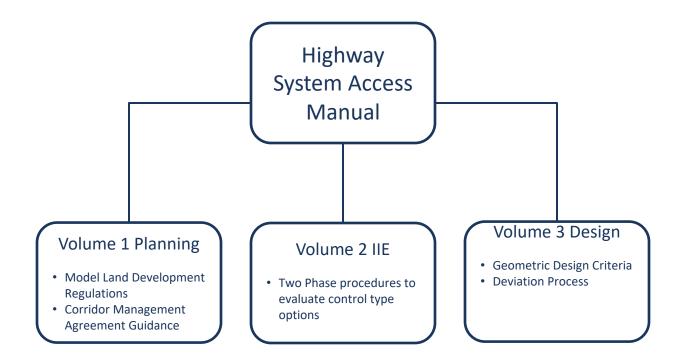
access


42% reduction in total vehicle hours of travel

57,500 gallons of fuel saved per mile per year

59% reduction in delay

Project History & Purpose


- Safety
 - 55% of all vehicular crashes involve access activity
 - 360 access related crashes estimated per day in TN

Manual Organization & Policy

Manual Organization

Policy

- Policy 385-01 "Application of the HSAM on TDOT Projects" became effective on February 1, 2022
- The HSAM Volume 2: Intersection and Interchange Evaluation shall be used during the project planning process to evaluate intersections on all projects.
 - Projects implemented by in-house maintenance, private driveways, other than street type intersections, and intersections where the major and minor approach have less than 400 vehicles per hour are not required to be evaluated under this policy.
- The HSAM Volume 3: Geometric Design shall be used on the following projects:
 - New Alignments
 - Roadway Widening
 - Major Reconstruction
- TDOT Rule Adoption process underway to update current permit process for private driveways.

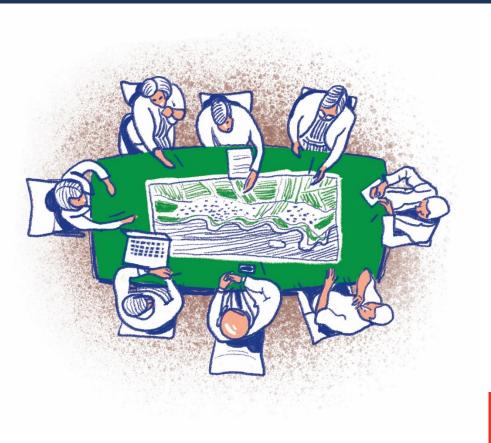
Adoption

- TDOT has adopted the manual for TDOT projects
- Entrance Rule update underway
- Local agencies may adopt for use in their jurisdictions (TDOT follows stricter guidance)
- Some local agencies have MOU to issue driveway permits, have agreed to follow TDOT Requirements or to be stricter

Corridor Management Agreements

A collaborative agreement among multiple communities or agencies that addresses the development, management, and operations of a roadway corridor.

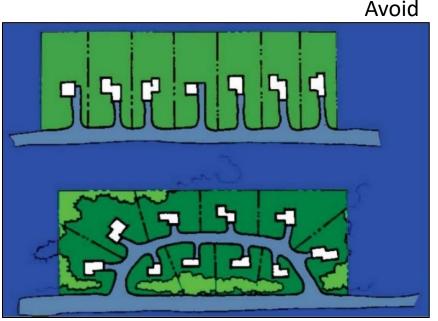
Corridor Management Agreements


Overview of corridor management agreements

History of CMAs in Tennessee Outlines the process to successfully implement a CMA agreement

Model Land Development Regulations

- Local agencies are responsible for land use regulations and planning.
- TDOT is willing to provide input or assistance as requested by the local agency.

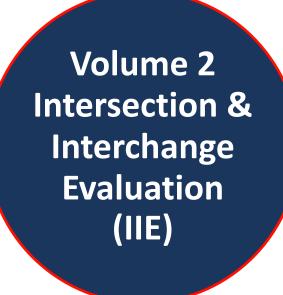


Model Land Development Regulations

For local jurisdictions wishing to better promote sound access management by way of their land development regulations.

This guide provides the following:

- Overview of national best practices
- An introduction to the various planning and regulatory tools
- Model ordinance language that may be adopted and incorporated into the local regulatory code


Model Land Development Regulations

- Regulations provide standards to a site before its development, they can be quite effective in promoting good access management.
- Provisions included in the land division and subdivision regulations can designate:
 - Lot size
 - Block size
 - Street network and connectivity
 - Driveway spacing and location
 - Pedestrian and bicycle access
 - Location and placement of transit access

HSAM Volume 2: Intersection and Interchange Evaluation

Documented screening process for intersection and interchange selection (FHWA calls this ICE)

Takes into account traffic operations, safety, and life-cycle costs (optional)

Allows flexibility for local conditions

- When should an IIE be done?
 - Anytime a signal is being considered.
 - May be done with 2-way and all way stop as well.

Alternative Intersections/Interchanges: Informational Report (AIIR)

Research, Development, and Technology Turner-Fairbank Highway Research Center 6300 Georgetown Pike McLean, VA 22101-2296

Vol. 2 IIE – Intersection Options

Signalized

Quadrant Intersection

Displaced Left Turn

Continuous Green T

Roundabout

J-Turn or R-Cut

Vol. 2 IIE – Interchange Options

Diamond

Diverging Diamond

Parclo

SPUI with Roundabout

SPUI

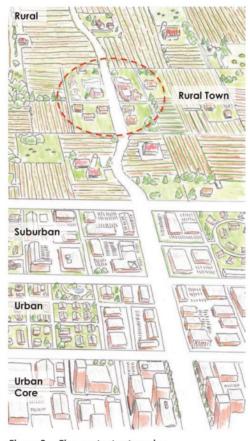
Diamond with Roundabouts

TDOT's IIE process is implemented in two stages:

- "Stage I Scoping" step to determine the short list of all possible options that merit further consideration and analysis because they meet project needs and are practical to pursue.
- "Stage II Preferred Option Selection" step to determine the preferred option based on more detailed evaluations conducted during typical preliminary engineering activities.

TDOT HSAM Vol. 2 IIE

- Documented Intersection Control Evaluation (ICE) Methodology
- Utilization of CAP-X for capacity screening
- Documented life-cycle cost approach (optional)
- Documented predictive crash analysis (optional)
- All scalable to the project needs


- NCHRP Report 1087: Guide for Intersection Control Evaluations recently published
 - Provides guidance on doing intersection evaluations

HSAM Volume 3: Access Geometric Design

Context / Functional Classification

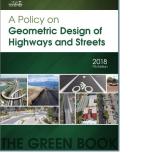
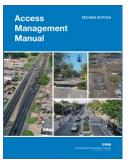


Figure 2. Five context catego

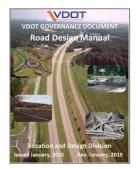
Context					
Roadway	Rural	Rural Town	Suburban	Urban	Urban Core
Principal Arterial	H speed H mobility- L access	L/M speed M mobility- H access	M/H speed M mobility- M access	L/M speed M mobility- M access	L speed M mobility- M access
Minor Arterial	H speed H mobility- M access	L/M speed M mobility- H access	M speed M mobility- M access	L/M speed M mobility- M/H access	L speed M mobility- M/H access
Collector	M speed M mobility- M access	L speed M mobility- H access	M speed M mobility- H access	L speed M mobility- H access	L speed M mobility- H access
Local	M speed M mobility- M access	L speed M mobility- H access	L speed L mobility- H access	L speed L mobility- H access	L speed L mobility- H access

H = high, M = medium, L = low


HSAM: Sources

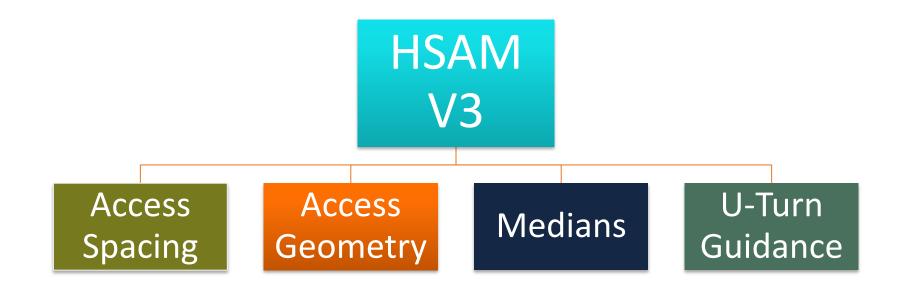
11/12021 Revision 5.3 Adapta GA 30308 TN TDOT

Manual for Constructing Driveway Entrances on State Highways 2015 Edition


Access Management

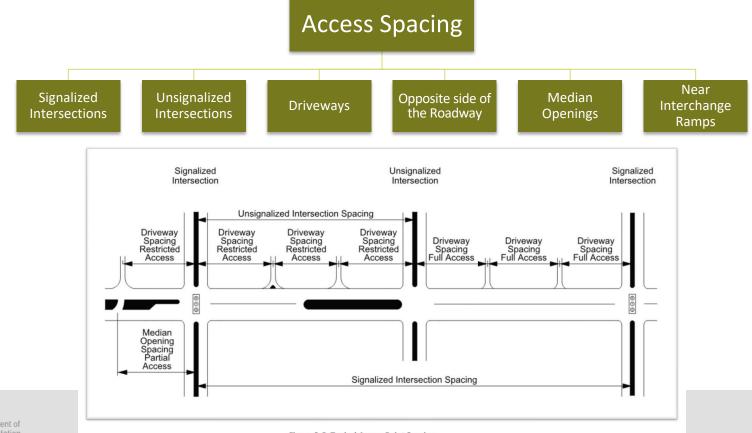
Report

December 2017

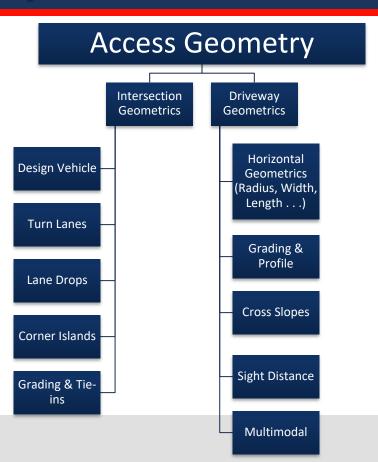

Prepared by:

The University of Tennessee, Knoxville Center for Transportation Research

Airton Kohls, Ph.D. Mareike Ortmann

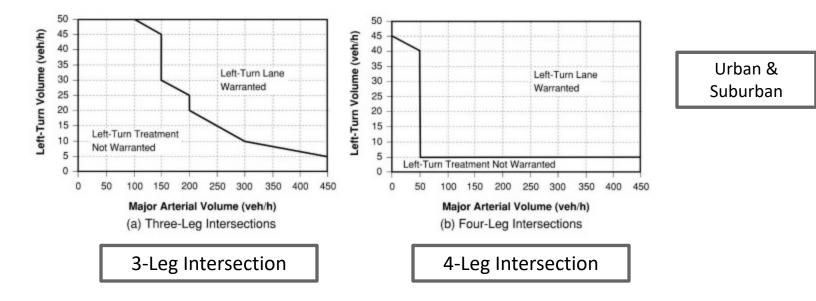


HSAM V3: Content Overview


Access Spacing Overview

TN TPOT Department of Transportation

Figure 3-5: Typical Access Point Spacing


Access Geometry

Left Turn Lane Warrants (unsignalized)

"... Warrants indicate situations where a left-turn lane would help mitigate traffic conflicts, not necessarily situations where a left-turn lane is required..."

Access Geometry - Throat Length

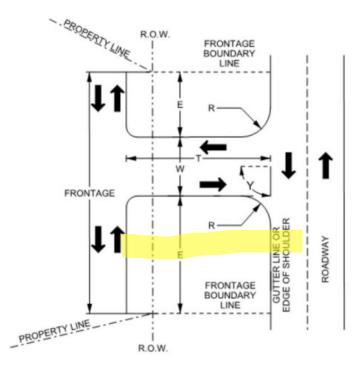


Figure 3-24: Horizontal Driveway Geometrics.

Table 3-17: Minimum Driveway Throat Length Requirements^{29, 30}

Minimum Driveway Throat Length (T)				
Number of Egress Lanes	Minimum Throat Length			
(left, thru and right)	Feet			
1	35 ft. *			
2	75 ft.			
3	200 ft.			
4	300 ft.			

* Inadequate driveway length can also provide hazards to entering traffic on site. Particularly where the on-site parking can back out of and block the entrance and prevent a vehicle from entering. To avoid this problem, a distance of at least 50 feet is used on entrance length where back out parking may interfere with entry movement, as shown in Figure 3-25.

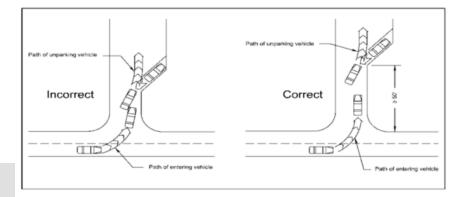


Figure 3-25: Driveway Throat Length Accommodation for Parking Conflicts²⁰

Medians

TDOT

Two Way Left Turn Lanes (TWLTL)

HSAM *Recommendations* for TWLTL:

- Non-traversable median should be considered first
- 3-Lane TWLTL should have ADT < 17,000 VPD
- 5-Lane TWLTL should have ADT <28,000 VPD
- Posted Speed should be <45 MPH to warrant TWLTL
- 7-Lane TWLTL is strongly discouraged
- Unsignalized Left-Turning movements across 3+ Lanes of Opposing traffic is strong discouraged

SR-153 (7-lane Section) Note one of the highest Crash Rates in R2

Deviations

- Process:
 - Complete Deviation Request form (different form for TDOT project or private development project)
 - Submit to Region Traffic Engineer for approval and submittal to Deviation Committee
 - Committee meets once a month

Deviations

Implementing Access Management on established routes will have difficulties. When criteria can't be met, deviations should be mitigated.

Mitigations:

- Limiting Access points to right-in / right-out
- Consider use of frontage or backage roads to consolidate access
- Consider joint access driveways
- Reducing the number of driveways for properties with multiple access points
- Limit corner lot access to minor roadway

Using the Manual

- Vol 1 Use as a reference or adopt included language for local land use planning regulations.
- Vol 1 Coordinate with TDOT Region if interested in a CMA.
- Vol 2 Use as a guide for determining the best intersection control type. A signal is not always best.
- Vol 3 Use for access design to ensure the integrity of the roadway is maintained as adjacent land is developed.

Questions???

Manual website:

Contact Info:

Michelle Nickerson

Michelle.Nickerson@tn.gov

615-741-0894

